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Abstract
A three-parameter family of point interactions constructed from sequences
of symmetric barrier–well–barrier and well–barrier–well rectangles is studied
in the limit, when the rectangles are squeezed to zero width but the barrier
height and the well depth become infinite (the zero-range limit). The limiting
generalized potentials are referred to as the second derivative of Dirac’s
delta function ±λδ′′(x) with a renormalized coupling constant λ > 0 or
simply as ±δ′′-like point interactions. As a result, a whole family of self-
adjoint extensions of the one-dimensional Schrödinger operator is shown to
exist, which results in full and partial resonant tunnelling through this class
of singular potentials. The resonant tunnelling occurs for countable sets
of interaction strength values in the λ-space which are the roots of several
transcendental equations. The comparison with the previous results for δ′-like
point interactions is also discussed.

PACS numbers: 03.65.−w, 73.50.Bk, 02.40.Xx

1. Introduction

Point and contact interactions are widely used in various areas of quantum physics (see [1, 2]
and references therein, including a large number of other applications, e.g., [3–8]). Intuitively,
these interactions are understood as sharply localized potentials, exhibiting a number of
interesting and intriguing features [9–24]. Applications of these models to condensed matter
physics (see, e.g., [25–29]) are of particular interest nowadays, mainly because of the rapid
progress in fabricating nanoscale quantum devices. Other applications arise in optics, for
instance, in dielectric media where electromagnetic waves scatter at boundaries or thin layers
[30].

1751-8113/07/205443+15$30.00 © 2007 IOP Publishing Ltd Printed in the UK 5443

http://dx.doi.org/10.1088/1751-8113/40/20/013
http://stacks.iop.org/JPhysA/40/5443


5444 A V Zolotaryuk et al

In the following we use the quantum-mechanical terminology and consider the limit which
neglects the interactions between electrons. In this case, the one-dimensional Schrödinger
equation with a potential V (x) for a stationary state reads

−ψ ′′(x) + V (x)ψ(x) = Eψ(x), (1)

where the prime stands for the differentiation with respect to the spatial coordinate x,ψ(x)

is the wavefunction for a particle of mass m (we use units in which h̄2/2m = 1) and E is
(positive, zero or negative) energy. The present paper deals with the scattering properties of
equation (1), where the potential V (x) describes a whole family of point interactions with
singularity at x = 0. Below they are defined as a zero-range limit of the potentials constructed
from rectangular barriers and wells.

A system with a point interaction can be described as a self-adjoint extension of the
kinetic energy operator −d2/dx2 with the boundary conditions for the wavefunction ψ(x)

and its derivative ψ ′(x) connected at the singular point x = 0 through a two-by-two transfer
matrix � [15, 20],(

ψ(+0)

ψ ′(+0)

)
= �

(
ψ(−0)

ψ ′(−0)

)
= eiχ

(
λ11 λ12

λ21 λ22

)(
ψ(−0)

ψ ′(−0)

)
, (2)

with the real parameters χ ∈ [0, π), λij ∈ R, fulfilling the equation λ11λ22 − λ12λ21 = 1.
However, the connection condition (2) does not describe perfect walls at x = 0 through which
no probability flow can penetrate, resulting in complete separation between the left and the
right half-lines R

− and R
+. For this reason, the point interactions of this type are called

separated, in contrast to the non-separated point interactions described by the connection
condition (2). For separating states, instead of the matrix equation (2), we have the following
two conditions [20]:

ψ ′(−0) = λ−ψ(−0) and ψ ′(+0) = λ+ψ(+0), (3)

with the parameters λ± ∈ R ∪ {∞}. If, e.g., λ− = ∞, then the first equation (3) reads
ψ(−0) = 0 and similarly for λ+ = ∞.

On the other hand, instead of using the two connection conditions (2) and (3), for the
description of both the non-separated and separated point interactions one can use the approach
developed in [21–23], according to which the boundary condition is given in terms of the two-
component boundary vectors

�
.=

(
ψ(+0)

ψ(−0)

)
and � ′ .=

(
ψ ′(+0)

−ψ ′(−0)

)
. (4)

This boundary condition reads [21–23, 31]

(U − I )� + iL0(U + I )� ′ = 0 (5)

with a two-by-two unitary matrix U ∈ U(2), the unit matrix I and an arbitrary non-zero
constant L0 of length dimension. A standard parametrization for U ∈ U(2) is given by

U = eiξ

(
α β

−β∗ α∗

)
= eiξ

(
αR + iαI βR + iβI

−βR + iβI αR − iαI

)
, (6)

where ξ ∈ [0, π) and α, β are complex parameters satisfying

|α|2 + |β|2 = α2
R + α2

I + β2
R + β2

I = 1. (7)

Note that the description (5) with (6) can be put into the connection form (2) only if β �= 0
and, in this case, we have [23, 31]

� = i

βR − iβI

(
sin ξ − αI −L0(cos ξ + αR)

L−1
0 (cos ξ − αR) sin ξ + αI

)
. (8)



Resonant tunnelling through short-range singular potentials 5445

For β = 0, the boundary condition (5) splits into two conditions [23, 31] which are the
counterparts of (3).

If we suppose the interaction V (x) to be invariant under space reflection x → −x, then
the transformation

ψ(±0) → ψ(∓0) and ψ ′(±0) → −ψ ′(∓0) (9)

has to keep equation (2) but this occurs if and only if λ11 = λ22 and χ = 0.
Thus, in the particular case of the point potential given in the form of Dirac’s delta

function,

V (x) = gδ(x), (10)

with g being a coupling constant, the constant values in (2) become

λ11 = λ22 = 1, λ12 = 0, λ21 = g, χ = 0. (11)

In this case, the type of boundary conditions (2) assumes that the wavefunction ψ(x) is
continuous but its first derivative discontinuous at the singularity point x = 0. This is a
quite simple example of point interactions in one dimension. Because of the continuity of the
wavefunction ψ(x), the product δ(x)ψ(x) becomes well defined at x = 0 and therefore the
solution of equation (1) with potential (10) is unique. Using equations (2) and (8), instead of
conditions (11), we obtain

αI = βR = 0, αR = −cos ξ, βI = −sin ξ, (12)

where the parameter ξ is given by the equation

tan ξ = 2/L0g. (13)

There exists a special case of tunnelling through the antisymmetric δ′-potential defined
as the derivative of Dirac’s delta function in the sense of distributions, i.e.,

V (x) = λδ′(x), δ′(x)
.= dδ(x)/dx, (14)

with a coupling constant λ, when both the wavefunction ψ(x) and its derivative ψ ′(x) appear
to be discontinuous at x = 0 [32, 33]. For this case, the matrix equation (2) is invariant under
space reflection x → −x, if instead of transformation (9), the substitutions

ψ(+0) → C−1ψ(−0), ψ(−0) → Cψ(+0),

ψ ′(+0) → Cψ ′(−0), ψ ′(−0) → C−1ψ ′(+0)
(15)

with any real constant C are used, but this kind of invariance occurs if and only if

λ−1
11 = λ22 = C, λ12 = λ21 = 0 and χ = 0. (16)

The point interaction of this type becomes non-trivial if C �= 1. In this case, according to
equations (2) and (8), the matrix U ∈ U(2) is given by

αR = βR = 0, αI = C2 − 1

C2 + 1
, βI = − 2C

C2 + 1
, ξ = π

2
. (17)

In this paper, we study a family of point interactions with non-trivial scattering properties
which exhibit full resonant transparency. Since for the appearance of full transparency the
potential V (x) in equation (1) has to be a symmetric function under the transformation
x → −x, a fully transparent system with resonant tunnelling can be constructed from two
identical barriers. Besides this, in order to have an interaction located at a single point, some
kind of singularity in the form of a well located between these barriers has to be incorporated
into the double-well system as well. Therefore the zero-range limit of two rectangular barriers
separated by a rectangular well, when the barrier height and the well depth tend to infinity as
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the barriers and the well are squeezed to zero width, can be used as a simple particular choice
of full resonant tunnelling because it can analytically be treated yielding explicit solutions.
It turns out that the structure with opposite sign, i.e., a barrier surrounded by two identical
wells, in the zero-range limit can also admit a fully transparent regime. The sequence of
such barrier–well–barrier (BWB) or well–barrier–well (WBW) stepwise functions with an
appropriate squeezing parameter can be considered as a finite regularization of the second
derivative of Dirac’s delta function used for the point potential

V (x) = ±λδ′′(x), δ′′(x)
.= d2δ(x)/dx2, (18)

with a coupling constant λ > 0. Similarly to [9, 33], in the present paper we consider a more
general situation when potential (18) has a renormalized constant. To this end, we introduce
into the regularization scheme of potential (18) three parameters and refer to such potentials
in the zero-range limit as to ±δ′′-like point potentials. Using this scheme, the same as in
[33], we show that it is possible to define a whole class of ±δ′′-like point interactions with
full resonant transparency. As a result, the regions of renormalization parameters for the δ′-
and ±δ′′-interactions appear to be same, but the scattering matrix and conditions for resonant
tunnelling appear to be different.

2. A rectangular BWB regularization of the potential λδ′′(x)

For regularization of interaction (18) with positive sign we approximate it by two identical
barriers of height h and width l separated by a well of depth d and width 2r . Hence the
regularized potential is assumed to be a symmetric stepwise function defined by

Vl,2r,l(x)
.= λ




0 for −∞ < x < −l − r

h for −l − r < x < −r

−d for −r < x < r

h for r < x < l + r

0 for l + r < x < ∞

(19)

with arbitrary positive constants h, l, d, r . This BWB system can be considered as the sum of
the regularized dipoles δ′(x) and −δ′(x) attached each to other at the point x = 0.

We are looking for positive-energy solutions of equation (1) with potential (19) in the
form

ψ(x) =




eikx + R e−ikx for −∞ < x < −l − r

A1 epx + B1 e−px for −l − r < x < −r

A2 sin(qx) + B2 cos(qx) for −r < x < r

A3 epx + B3 e−px for r < x < l + r

T eikx for l + r < x < ∞,

(20)

where R and T are the reflection and transmission amplitudes (from the left), respectively, and

k =
√

E, p = √
λh − E and q =

√
λd + E. (21)

The unknown coefficients Aj and Bj , j = 1, 2, 3, are eliminated in a standard way by matching
the solutions at the boundaries x = ±r and x = ±(l +r). As a result, the scattering amplitudes
R and T can be written as follows,

R = − iW

�1 + i�2
e−2ik(l+r) and T = 1

�1 + i�2
e−2ik(l+r), (22)
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with the following notations:

W
.= λ

k
D1 cosh2(pl) cos(2qr), (23)

D1
.= h

p
tanh(pl) − f d

2q
tan(2qr), (24)

f
.= 1 +

[(
1 +

h

d

)
k2

p2
− h

d

]
tanh2(pl), (25)

�1
.= cosh(2pl) cos(2qr) +

1

2

(
p

q
− q

p

)
sinh(2pl) sin(2qr), (26)

�2
.= D2 cosh2(pl) cos(2qr), (27)

D2
.=

(
p

k
− k

p

)
tanh(pl)− 1

2

(
q

k
+

k

q

)
tan(2qr) +

1

2

(
p2

kq
+

kq

p2

)
tanh2(pl) tan(2qr). (28)

The reflectivity and transmissivity can be represented in the form

R .= |R|2 = W 2

1 + W 2
and T .= |T |2 = 1

1 + W 2
. (29)

Therefore the condition of full transparency is W = 0 or D1 = 0, and according to equation
(24) this condition takes the following explicit form:

h

p
tanh(pl) = f d

2q
tan(2qr). (30)

In the d → 0 limit, we have q → k and the last equation takes the well-known form for the
double-well structure:

2 cot(2kr) =
(

k

p
− p

k

)
tanh(pl), (31)

i.e., equation (30) can be considered as a generalization of the resonant tunnelling condition
(31) to the case with two identical barriers separated by a well.

The finite-range expressions given by equations (22)–(28) with the squeezing parameters
l and r will be used below to obtain the zero-range limit of potential (19) when l → 0 and
r → 0 simultaneously. In this way, we are able to define a whole family of renormalized
versions of the point interaction (18) with positive sign.

3. Scattering amplitudes in the zero-range limit

A whole family of δ′′-like point interactions can be constructed from squeezing the BWB
system (19) if both the barrier height h and the well depth d increase to infinity. Consider the
general case

h = al−µ and d = bl−ν (32)

with arbitrary positive constants a, b, µ, ν, where width l serves as a squeezing parameter. As
regards the well width r, using the condition that for a δ′′-like BWB system, the area above
the x-axis and the area below this axis must be equal, we obtain the relation between l and r:

r = ηl1−µ+ν, η
.= a/b. (33)
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This relation shows how the behaviour of width r depends on the squeezing parameter l.
In general, we are interested in the case of single δ′′-like point interactions, when the distance
r also goes to zero as l → 0. In this case, as follows from equation (33), the inequality
1 − µ + ν > 0 has to be imposed as a necessary condition for obtaining point interactions in
the l → 0 limit. Then the set of all single-point interactions being a subset of the quadrant
{µ > 0, ν > 0} appears to be bounded from below by the line ν = µ − 1 (shown in figure 1
by the dashed line). More precisely, the region of all possible single-point interactions is given
by the set

�p
.= {µ > 0, ν > 0 | µ − 1 < ν < ∞}. (34)

Using now equations (21), (32) and (33), in the l → 0 limit we find the following
asymptotical behaviour for the set �p,

p = σ l−µ/2

(
1 − k2

2σ 2
lµ + · · ·

)
, q = σ√

η
l−ν/2

(
1 +

ηk2

2σ 2
lν + · · ·

)
, (35)

for any positive µ and ν. Here we have incorporated the new notation for the coupling constant:

σ
.=

√
λa. (36)

In order to find the asymptotics in the l → 0 limit for W,�1 and �2 given by
equations (23)–(28), it is convenient to consider separately the following four cases: (i)
pl → 0 and qr → 0; (ii) pl → 0 and qr → const; (iii) pl → const and qr → 0; (iv)
pl → const and qr → const.

Case (i): pl → 0 and qr → 0. The region on the quadrant {µ > 0, ν > 0}, where these
limits occur simultaneously, can easily be found from expansions (35). Indeed, it follows
from the pl → 0 limit that µ < 2, while from the qr → 0 limit we obtain the inequality
2 − 2µ + ν > 0. Both these inequalities define the set

�0
.= {µ > 0, ν > 0 | 0 < µ < 2, 2(µ − 1) < ν < ∞} (37)

which is a subset of �p (see figure 1). Using expansions (35), for the set �0 we obtain the
expansions

tanh(pl) = σ l1−µ/2

(
1 − σ 2

3
l2−µ − k2

2σ 2
lµ + · · ·

)
, (38)

tan(2qr) = 2
√

ησ l1−µ+ν/2

(
1 +

ηk2

2σ 2
lν +

4ησ 2

3
l2−2µ+ν + · · ·

)
. (39)

Using next expansions (35) and (38) in equation (25), on the set �0, including its boundary
2 − 2µ + ν = 0, we find

f = 1 + k2l2 − ησ 2l2−2µ+ν + 2
3ησ 4l4−3µ+ν + ηk2l2−µ+ν + · · · . (40)

As a result, using expansions (35), (38)–(40) in equations (24) and (28), we obtain in the
l → 0 limit for the set �0 the final asymptotics:

�1 → 1 and W,�2 → −σ 4

3k
(l3−2µ + ηl3−3µ+ν). (41)

As follows from limits (41), W,�2 → 0 if both the inequalities 3−2µ > 0 and 3(1−µ)+ν > 0
hold simultaneously. Therefore (see equations (22) or (29)) the set

�f
.= {µ > 0, ν > 0 | µ < 3/2, 3(µ − 1) < ν < ∞}, (42)
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Ω1

Ω4

Ω3

Ω2

Ω5

Ω6

Ω

ν

f

1

2
3

2

Figure 1. Diagram of existence of δ′′-like single-point interactions including the sets of resonances.
The shaded set shows the region of fully transparent interactions �f , whereas its boundary
L1

.= �1 ∪ �2 ∪ �3 is the set of effective δ-interactions. Resonant tunnelling occurs along the
line L2

.= �4 ∪ �5 and at the isolated point �6.

being a subset of �0 (see figure 1), is a region of full transparency for the family of δ′′-like
point interactions defined through equations (32).

Let us now consider the boundary of the set �f consisting of the two lines �1 =
{1 < µ < 3/2, ν = 3(µ − 1)},�2 = {µ = 3/2, 3/2 < ν < ∞} and the single point
�3 = {µ = ν = 3/2}, which are shown in figure 1. It follows from asymptotics (41) that
except for �1, the quantities W and �2 take also finite values. As a result, according to
equation (22), we obtain the same scattering amplitudes as for the δ-interaction (10), namely

R = 1

2ik/g − 1
and T = 1

1 + ig/2k
, (43)

but with the renormalized coupling constant given by the equations

g = −2

3
σ 4




η for �1

1 for �2

1 + η for �3.

(44)

Thus, for all these three sets, i.e., for the line L1
.= �1 ∪�2 ∪�3, the transmission through the

δ′′-like point potential is the same as for the δ-well potential (10) with the coupling constant
(44). As expected intuitively, on the line L1 the effective coupling constant g for the δ′′-like
interaction is twice bigger than for the corresponding δ′-like interaction [33].

Case (ii): pl → 0 and qr → const. According to expansions (35), this situation occurs on the
line ν = 2(µ − 1) where qr → √

ησ as l → 0. Here asymptotics (40) are slightly modified
to

f = 1 − ησ 2 + 2
3ησ 4l2−µ + ηk2lµ + · · · (45)

and instead of asymptotics (39) we have to use the expansion

tan(2qr) = tan(2
√

ησ) + O(l2µ−2). (46)
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Then, under the condition

(1 − ησ 2) tan(2
√

ησ) = 2
√

ησ, (47)

on the line ν = 2(µ − 1) we obtain from equations (23), (24), (27) and (28) that in the
zero-range limit

W,�2 → −σ 4

3k
[cos(2

√
ησ) +

√
ησ sin(2

√
ησ)]l3−2µ. (48)

Next, from equation (24) on this line we also find the finite limit

�1 → cos(2
√

ησ) +
√

ησ sin(2
√

ησ) (49)

as l → 0 but without constraint (47).
Therefore W,�2 → 0 on the line ν = 2(µ − 1) if µ < 3/2 (due to the presence of the

factor l3−2µ in asymptotics (48)) and this happens for those values of the constant σ which are
solutions to equation (47). However, W,�2 → ∞ for other values of σ , which do not satisfy
equation (47). At the limiting point on the line ν = 2(µ − 1) where µ = 3/2, both W and �2

become non-zero finite constants. In the following we denote this line and its limiting point
by

�4
.= {1 < µ < 3/2, ν = 2(µ − 1)}, �5

.= {µ = 3/2, ν = 1}, (50)

respectively (see figure 1). Thus, on the whole line L2
.= �4 ∪ �5, where pl → 0 and

qr → √
ησ , we have the limits W,�2 → ∞, except for those values of the parameter σ

which satisfy equation (47).
Equation (47) can be rewritten as a quadratic equation with respect to tan(

√
ησ), leading

to the following two equations:

tan(
√

ησ) = √
ησ and tan(

√
ησ) = − 1√

ησ
. (51)

The first equation coincides with the condition for resonant tunnelling through the rectangular
barrier–well system [33]. The second equation describes new resonances, which appear due
to the presence of the second barrier in the BWB system. As illustrated by figure 2, the set of
(non-zero) roots of the first equation {σ̄n}∞n=1 is located on the intervals

nπη−1/2 < σ̄n < (n + 1/2)πη−1/2, n = 1, 2, . . . , (52)

whereas the second series of roots {τ̄n}∞n=1 lies on the intervals

(n − 1/2)πη−1/2 < τ̄n < nπη−1/2, n = 1, 2, . . . . (53)

Let us denote each pair of the resonance points σ̄n and τ̄n by s̄n. Then, using
equations (51), we find that at these points

cos(2
√

ηs̄n) +
√

ηs̄n sin(2
√

ηs̄n) = ±1, n = 1, 2, . . . , (54)

where the upper sign corresponds to the resonances at {σ̄n}∞n=1 and the lower one for {τ̄n}∞n=1.
Therefore, due to asymptotics (48) and (49), in the l → 0 limit we find that �1 → ±1 on
the whole line L2, while W and �2 have (equal) non-zero limits only at the limiting point �5,
namely, W,�2 → ∓s̄4

n

/
3k, n = 1, 2, . . . .

According to equations (22), the reflection and transmission amplitudes on the line �4 in
the l → 0 limit are given by

R → 0 and T → ±1, (55)

while at the point �5 these amplitudes, similarly to (43), also describe the effective δ-
interaction. They have almost the same form as amplitudes (43),

R = 1

2ik/g − 1
and T = ± 1

1 + ig/2k
, (56)
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σσσσ
1 5π/23π/2π/2 σσσσ

2
ττττ

2
ττττ

1

0 σσσσ

Figure 2. Graphical solutions s̄n = (σ̄n, τ̄n), n = 1, 2, . . . , of equations (51) with η = 1 in the
σ -space shown by dots along the σ -axis.

but, in this case, with the effective coupling constant

g = −2s̄4
n

/
3, n = 1, 2, . . . . (57)

The upper sign expression of the second equation (56) corresponds to the resonances with
σ = σ̄n and the lower one to the resonances with σ = τ̄n, n = 1, 2, . . . .

Thus, at the resonances, which occur in the σ -space at the values {s̄n}∞n=1, the transmission
is full on the set �4, while at the point �5, the transmission is effectively the same as for the
δ-interaction with the renormalized coupling constant (57).

Case (iii): pl → const. and qr → 0. It follows from asymptotics (35) that this case,
namely pl → σ and qr → 0, corresponds to the vertical line {µ = 2, 2 < ν < ∞} (see
figure 1). On this line, instead of asymptotics (38), we have

tanh(pl) = tanh σ + O(l2), (58)

while in (39) we should put µ = 2. Using these asymptotics, we find that f → 1 (see
equations (25) and (32)) and finally from equation (24) we obtain that D1 → ∞ as l → 0.
Therefore case (iii) deals with full reflection (R = −1 and T = 0).

Case (iv): pl → const and qr → const. Here, due to expansions (35), we have the non-zero
finite limits: pl → σ and qr → √

ησ . These limits take place only at the isolated point
�6

.= {µ = ν = 2} (see figure 1). Using asymptotics (46) and (58), for this case we obtain

f = 1 − η tanh2 σ + O(l2). (59)

As a result, similarly to case (ii), one obtains that W,�2 → ∞, except for those values of the
constant σ which satisfy the equation

(1 − η tanh2 σ) tan(2
√

ησ) = 2
√

η tanh σ. (60)
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5π/23π/2π/20

-1

1

σσσσ
1

σσσσ
2

ττττ
2ττττ

1

σσσσ

Figure 3. Graphical solutions sn = (σn, τn) of equations (62) with η = 1 in the σ -space shown
by dots along the σ -axis.

Note that for small σ equation (60) reduces to equation (47). At those values of σ which
satisfy equation (60), we have the limits W,�2 → 0. Next, from equation (26), in the l → 0
limit, we obtain (cf equation (49)) the following asymptotics,

�1 → cosh(2σ) cos(2
√

ησ) +
1

2

(√
η − 1√

η

)
sinh(2σ) sin(2

√
ησ), (61)

valid for all σ without constraint (60).
Similarly to equation (47), constraint (60) can also be rewritten as a quadratic equation

with respect to tan(
√

ησ), leading to the two equations:

tan(
√

ησ) = √
η tanh σ and tan(

√
ησ) = −coth σ/

√
η. (62)

Again, the first of these equations coincides with the corresponding condition for resonant
tunnelling through the barrier–well rectangular system [33]. The second equation describes
new resonances, which appear due to the presence of the second barrier in the BWB system.
As illustrated by figure 3, the set of (non-zero) roots of the first equation {σn}∞n=1 is located on
intervals (52), whereas the second series of roots {τn}∞n=1 lies on intervals (53).

Similarly, we denote each pair of the resonance points σn and τn by sn. Then, inserting
equations (62) into the rhs of (61), we find that these asymptotics reduce to �1 → ±1, where
the upper sign belongs to the resonances at {σn}∞n=1 and the lower one for {τn}∞n=1. Thus, as
follows from equations (22), at the resonances in the σ -space {sn}∞n=1 given by equations (62),
we again obtain the limits (55). In other words, for the point µ = ν = 2 we have full resonant
tunnelling, in contrast to partial resonant tunnelling for the δ′-interaction [33].
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4. Scattering properties of the WBW structure

Similarly, one can investigate the potentials with opposite sign, which correspond to the lower
sign in the first equation (18). In order to keep the most of calculations from the previous
section, for regularization of the potential −δ′′(x) it is convenient to use the structure consisting
of a barrier of height h and width 2l surrounded by two identical wells of depth d and width r:

Vr,2l,r (x)
.= λ




0 for −∞ < x < −l − r

−d for −l − r < x < −l

h for −l < x < l

−d for l < x < l + r

0 for l + r < x < ∞.

(63)

Keeping the same notations (21), in the similar way we obtain that �1 in (22) is given by the
same equation (26), whereas W and �2 have the following slightly modified form:

W
.= λ

k
D1 cosh2(pl) cos2(qr), (64)

D1
.= h

p
tanh(pl) − d

q
[1 + tanh2(pl)] tan(qr) +

1

p

[
d + (h + d)

k2

q2

]
tanh(pl) tan2(qr), (65)

�2
.= D2 cosh(2pl) cos2(qr), (66)

D2
.= 1

2

(
p

k
− k

p

)
tanh(pl) −

(
q

k
+

k

q

)
tan(qr) +

1

2

(
q2

kp
− kp

q2

)
tanh(2pl) tan2(qr). (67)

In contrast to the symmetric BWB potential (19), it is not evident that the full resonant
tunnelling regime can exist for the WBW structure given by equations (63). Therefore we
need first to analyse the possibility of resonances for a regularized potential (63).

4.1. The condition for resonances in a finite WBW structure

For the existence of resonances with full transparency through system (63) the equality D1 = 0
(see equation (64)) has to be accomplished. According to equation (65), this equality takes
the following explicit form:[

1 +

(
1 +

h

d

)
k2

q2

]
tan(qr) +

h

d
cot(qr) = p

q
[tanh(pl) + coth(pl)]. (68)

Equation (68) can be rewritten as a quadratic equation with respect to tan(qr). The solution
of the resulting quadratic equation can be written in the form

tan
(
qr±

n

) = p

2q[1 + (1 + h/d)k2/q2]

[
tanh(pl) + coth(pl)

±
√

[tanh(pl) − coth(pl)]2 − 4(1 + h/d)2k2/p2

]
(69)

with two series of roots
{
r±
n

}∞
n=0. The necessary condition for the existence of these roots is

the inequality

2(1 + h/d)k/p � coth(pl) − tanh(pl). (70)

Since the rhs of equation (69) is positive, each pair of the roots r±
n lies on the interval

nπq−1 < r±
n < (n + 1/2)πq−1, n = 0, 1, . . . . (71)
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As follows from (70), the fully transparent regime can exist for a wide family of
rectangular WBW structures, but the existence of both the wells appears to be crucial for
resonant tunnelling. Indeed, in the d → 0 limit inequality (70) obviously fails. On the other
hand, this inequality is always satisfied in the zero-range limit. Indeed, if pl → 0, using
equations (32), one obtains hl/d = O(l1−µ+ν) → 0 for the region �p defined by (34). In the
case pl → const we have h/d = η, p = O(l−1) and again inequality (70) holds in the l → 0
limit.

In the case of equality in (70) each pair of the roots degenerates, so that r±
n → r0

n . From
this equality one can find the equation

tanh(pl) + coth(pl) = 2
√

1 + (1 + h/d)2k2/p2. (72)

Using equations (21), from (69) we find the limits

tan
(
qr±

n

) → tan
(
qr0

n

) = p

2q
· tanh(pl) + coth(pl)

1 + (1 + h/d)k2/q2
. (73)

Using next relation (72), the last equation can be simplified to

tan
(
qr0

n

) =
√

h

d + (h + d)k2/q2
, n = 0, 1, . . . . (74)

4.2. The zero-range limit of the WBW potential

In a similar way as in the previous section, for case (i), i.e., on the set �0, we obtain the same
asymptotics (41) in the zero-range limit, leading to the same results: the existence of the fully
transparent regime on the set �f and the effective δ-interaction on the line L1 described by
the scattering amplitudes (43) with the effective coupling constant (44).

For case (ii), when pl → 0 but qr → const, we also obtain a constraint at which the
transparency turns out to be non-zero. This constraint takes the form of the equation

sin(2
√

ησ) = 2
√

ησ cos2(
√

ησ), (75)

which, similarly to equation (47), reduces to the following two equations:

tan(
√

ησ) = √
ησ and cos(

√
ησ) = 0. (76)

Again, the first of these equations coincides with the first equation (51) and therefore it
describes the same spectrum of resonances given by the points {σ̄n}∞n=1 in the σ -space. The
second equation (76) differs from that in (51) and therefore the resonances with the solutions
τ̄n = (n − 1/2)πη−1/2, n = 1, 2, . . . , are specific for the −δ′′-like point interaction.

In spite of the difference of the points {τ̄n}∞n=1 given by the different second equations (51)
and (76), the asymptotics for �1 at the resonance points appear to be the same, namely,
�1 → ±1, where again the upper sign belongs to the resonances at the points {σ̄n}∞n=1 and the
lower one to the points {τ̄n}∞n=1. We also find that W,�2 → ∞ on the set �4, except for the
values s̄n = (σ̄n, τ̄n), n = 1, 2, . . . , where both W and �2 tend to zero.

At the limiting point �5 we have the asymptotics

W,�2 →
{−σ̄ 4

n

/
3k

(
1 + ησ̄ 2

n

)
for σ = σ̄n

τ̄ 2
n

/
kη for σ = τ̄n, n = 1, 2, . . . ,

(77)

inserting which into equations (22) we obtain the scattering amplitudes (56), but with the
renormalized coupling constant g given by

g =
{

−2σ̄ 4
n

/
3k

(
1 + ησ̄ 2

n

)
for σ = σ̄n

−2τ̄ 2
n

/
kη for σ = τ̄n, n = 1, 2, . . . .

(78)
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Similarly, at the point �6 we obtain the following condition for resonances (with
W,�2 → 0),

η + tan2(
√

ησ) = 2
√

η coth(2σ) tan(
√

ησ), (79)

which splits into the two simple equations

tan(
√

ησ) = √
η tanh σ and tan(

√
ησ) = √

η coth σ. (80)

Again, the first of these equations coincides with that for the δ′-interaction [33], whereas the
second one is specific for the WBW structure. For the solutions of both equations (80) we
keep the same notations, namely, {σn, τn}∞n=1. In the same way, from (61) we obtain the l → 0
limits �1 → ±1, where the upper sign corresponds to the first and the lower one to the second
equation in (80). Thus, for the resonance points σ = σn, τn, n = 1, 2, . . . , we have full
transmission through the −δ′′-like point potential with the scattering amplitudes (55). For the
values σ �= σn or τn, n = 1, 2, . . . , the half-lines R

± are separated (R = −1 and T = 0).

5. Boundary conditions on wavefunctions in the zero-range limit

In this section we consider the boundary conditions on the wavefunction ψ(x) at x = 0 in
the zero-range limit (when l, r → 0). From the finite-range equations (20), one can write the
following equations (with accuracy to an arbitrary constant, being the same for all boundary
conditions) for the left (at x = −l − r → −0) and the right (at x = l + r → +0) boundary
values of the wavefunction ψ(x) and its derivative ψ ′(x):

ψ(−0) = 1 + R, ψ(+0) = T ,

ψ ′(−0) = ik(1 − R), ψ ′(+0) = ikT .
(81)

In the case of full transmission (R → 0 and T → 1), which takes place on the set �f ,
equations (81) become ψ(−0) = ψ(+0) = 1, ψ ′(−0) = ψ ′(+0) = ik. Therefore the matrix
equation (2) is fulfilled if � = I . Here both the wavefunction ψ(x) and its derivative ψ ′(x)

are continuous at x = 0 and therefore the corresponding point interaction is trivial.
Similarly, in the case of resonances with R → 0 and T → ±1, which occur on the sets

�4 and �6, equations (81) reduce to ψ(−0) = 1, ψ(+0) = ±1, ψ ′(−0) = ik, ψ ′(+0) = ±ik
and therefore in equation (2) we have � = ±I . Here we are dealing with the case of full
resonant tunnelling through a ±δ′′-like point interaction. For other values σ , we have R = −1
and T = 0, i.e., the half-lines R

± are separated.
One can use the general relations for R and T, derived by Cheon et al [31], which follow

from equations (4)–(7) and (81):

R = αQ + α∗Q−1 − (eiξ + e−iξ )

eiξQ + e−iξQ−1 − (α + α∗)
, T = − β(Q − Q−1)

eiξQ + e−iξQ−1 − (α + α∗)
, (82)

where

Q
.= 1 − kL0

1 + kL0
. (83)

For the non-separating particular cases with R = 0 and T = ±1, it follows immediately
from the first equation (82) that α = 0, ξ = π/2, while imposing T = ±1 in the second
equation (82), we obtain β = ∓i.

Consider now the case of partial tunnelling which occurs on the line L1 as well as at the
point �5. First consider the line L1, where the transmission is given by equations (43) with
(44). Inserting these values for R and T into equations (81), we obtain the same boundary
values as previously [33] found for the δ′-interaction, namely

ψ(−0) = ψ(+0) = 1, ψ ′(−0) = ik − g, ψ ′(+0) = ik (84)
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where the constant g is given by equations (44). Then the matrix equation (2) is fulfilled with
the coefficients (11). In this case we are dealing with the same kind of transmission when the
system effectively behaves as the δ-interaction (10), but with the effective coupling constant
g being twice bigger than for the corresponding δ′-interaction [33].

In a similar way, using the scattering amplitudes (56), we find

ψ(−0) = 1, ψ(+0) = ±1, ψ ′(−0) = ik − g, ψ ′(+0) = ±ik. (85)

In this case the matrix equation (2) will be fulfilled if we put

λ11 = λ22 = ±1, λ12 = 0, λ21 = ±g, χ = 0. (86)

This case corresponds to partial resonant tunnelling through the renormalized ±δ′′-potential.
Note that the finite values for R and T, which correspond to the δ-interaction, can directly

be obtained from the general formulae (82), if we put αR = −cos ξ and αI = 0. Next, in order
to obtain the scattering amplitudes (56), it is sufficient to put β = ∓i sin ξ and tan ξ = 2/L0g.
Therefore the U matrix for the effective δ-interaction, which appears on the line L1 for any
value of the coupling constant λ and as resonant tunnelling (for a discrete set in the λ-space)
at the point �5, has the form

U = eiξ

(−cos ξ ∓i sin ξ

∓i sin ξ −cos ξ

)
, (87)

where the parameter ξ is given by equation (13).
Finally, we note that in the region �p\(�f ∪ L1 ∪ L2 ∪ �6), outside the discrete sets of

resonance points in the σ -space, which occur on the set L2 ∪ �6, we have separated point
interactions with W,�2 → ∞. In the l → 0 limit equations (22) imply R = −1 and T = 0.
Therefore for this type of separated point interactions equations (82) result in the U matrix
with α = −eiξ and β = 0 with any ξ ∈ [0, π).

6. Conclusions

In this paper we have analysed a family of point interactions with non-trivial scattering
properties exhibiting full and partial resonant tunnelling. The construction of zero-range
singular potentials of this type, which we refer to as ±δ′′-like point interactions, involves
explicitly three arbitrary positive parameters. One of these parameters (η) controls the rate
of squeezing the well (barrier) compared to squeezing both the barriers (wells). The others
two describe the rate of increasing the barrier height (µ) and the well depth (ν). As a result,
the three-parameter family of ±δ′′-like point interactions has been constructed and analysed
in detail. In particular, on the {µ, ν}-plane, the regions of point interactions with non-trivial
scattering properties have been found.

In general, under the description of all possible point interactions arising from the
zero-range limit, it is assumed that any interaction located at x = 0 is considered as two
interacting subsystems lying on the half-axes R

±. As shown in the present paper, among these
limiting cases there are those for which the interaction between the subsystems results in full
transparency. The family of this type is given by all pairs {µ, ν} ∈ �f illustrated by figure 1.

The interesting families of point interactions are found on the two lines L1, L2 and the
isolated point �6. The line L1, which splits all the point interactions into fully transparent
and non-transparent potentials, corresponds to the renormalized interaction ±λδ′′(x) that
effectively does not differ from the point interaction gδ(x), where the constant g is given in
terms of the coupling constant λ or σ (see equation (36)) through equation (44). Since in this
case the ±δ′′-like potential can be considered as two attached each to other δ′-like systems, the
effective coupling constant g appears to be twice bigger than the corresponding constant for the
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δ′-like interactions located along the same line L1. The second line L2 and the isolated point
�6 contain a family of non-trivial point interactions with resonant tunnelling. The resonances
appear at some fixed values of the coupling constant λ being countable sets in the λ-space.
On the sets �4 and �6 the resonance conditions given by equations (51), (62), (76) and (80)
provide full transparency, while at the limiting point �5 we have partial resonant transmission
given by amplitudes (56) with the coupling constants (57) and (78) for the BWB and the
WBW systems, respectively. At these resonances the system behaves effectively as a δ-well
potential.
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